Patterns of introduction and adaptation during the invasion of Aegilops triuncialis (Poaceae) into Californian serpentine soils.

نویسندگان

  • Harald Meimberg
  • Neil F Milan
  • Maria Karatassiou
  • Erin K Espeland
  • John K McKay
  • Kevin J Rice
چکیده

Multiple introductions can play a prominent role in explaining the success of biological invasions. One often cited mechanism is that multiple introductions of invasive species prevent genetic bottlenecks by parallel introductions of several distinct genotypes that, in turn, provide heritable variation necessary for local adaptation. Here, we show that the invasion of Aegilops triuncialis into California, USA, involved multiple introductions that may have facilitated invasion into serpentine habitats. Using microsatellite markers, we compared the polymorphism and genetic structure of populations of Ae. triuncialis invading serpentine soils in California to that of accessions from its native range. In a glasshouse study, we also compared phenotypic variation in phenological and fitness traits between invasive and native populations grown on loam soil and under serpentine edaphic conditions. Molecular analysis of invasive populations revealed that Californian populations cluster into three independent introductions (i.e. invasive lineages). Our glasshouse common garden experiment found that all Californian populations exhibited higher fitness under serpentine conditions. However, the three invasive lineages appear to represent independent pathways of adaptation to serpentine soil. Our results suggest that the rapid invasion of serpentine habitats in California may have been facilitated by the existence of colonizing Eurasian genotypes pre-adapted to serpentine soils.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phenotypic Plasticity May Facilitate Invasion by Aegilops triuncialis

One great obstacle to understanding the invasion of nonnative species into native ecosystems is the lack of information on the population biology of the invading species. In particular, morphological and physiological adaptations and potential for phenotypic plasticity will strongly influence a species’ ability to persist and spread in newly invaded ecosystems. Phenotypic plasticity can buffer ...

متن کامل

A molecular phylogeny of the wild onions (Allium; Alliaceae) with a focus on the western North American center of diversity.

Nuclear ribosomal DNA (ITS and ETS) sequences from 39 native Californian (USA) Allium species and congeners were combined with 154 ITS sequences available on GenBank to develop a global Allium phylogeny with the simultaneous goals of investigating the evolutionary history (monophyly) of Allium in the Californian center of diversity and exploring patterns of adaptation to serpentine soils. Phylo...

متن کامل

Multiple origins promote the ecological amplitude of allopolyploid Aegilops (Poaceae).

Polyploidy has been ubiquitous in plant evolution and is thought to be an important engine of biodiversity that facilitates speciation, adaptation, and range expansion. Polyploid species can exhibit higher ecological tolerance than their progenitor species. For allotetraploid species, this higher tolerance is often attributed to the existence of heterosis resulting from entire genome duplicatio...

متن کامل

Local adaptation, patterns of selection, and gene flow in the Californian serpentine sunflower (Helianthus exilis).

The traditional view of the species as the fundamental unit of evolution has been challenged by observations that in heterogeneous environments, gene flow may be too restricted to overcome the effects of local selection. Whether a species evolves as a cohesive unit depends critically on the dynamic balance between homogenizing gene flow among populations and potentially disruptive local adaptat...

متن کامل

Gene flow between wheat and wild relatives: empirical evidence from Aegilops geniculata, Ae. neglecta and Ae. triuncialis

Gene flow between domesticated species and their wild relatives is receiving growing attention. This study addressed introgression between wheat and natural populations of its wild relatives (Aegilops species). The sampling included 472 individuals, collected from 32 Mediterranean populations of three widespread Aegilops species (Aegilops geniculata, Ae. neglecta and Ae. triuncialis) and compar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular ecology

دوره 19 23  شماره 

صفحات  -

تاریخ انتشار 2010